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1 Introduction: The challenge of conversational AI
Conversational Artificial Intelligence (AI) systems (such as Amazon Alexa, Microsoft Cortana,

Apple Siri) have recently become ubiquitous and are now an integral part of our everyday lives. There
have been huge advancements recently in the achievement of conversational AI with many claims
regarding the closeness of attaining the goal of artificial general intelligence (AGI) based on these
successes (see e.g. Bommasani et al., 2021). Nevertheless, in practice, the scope of this success has
been limited. End-users of such systems often treat them in the same way they would another human
in that they have expectations of naturalness, intelligence, flexibility, and smooth interaction, leading
regularly to disappointment and frustration (Moore, 2017; Clark et al., 2019; Chaves and Gerosa,
2021; Park et al., 2017; Luger and Sellen, 2016; Fischer et al., 2019) because these systems do not
offer this expected potential.

The reason for this is that natural language (NL) use in general, but especially in conversation,
presents numerous challenges that have been traditionally distinguished and isolated from each other
as pertaining to various encapsulated modules. For example, autonomous domains of competence
such as syntax, semantics, and pragmatics are distinguished while non-verbal aspects of NL process-
ing like facial expressions, eye gaze, manual gestures are ignored, as are the effects of the physical and
cultural environment. This standard strategy of separating phenomena and treating them as encapsu-
lated modules with idiosyncratic vocabularies led rule-based approaches to an inability to integrate
seamlessly the various assumptions that are required for the resolution of various challenging aspects
of processing in dialogue. As a result, open-ended and multi-domain artificial conversational systems,
in particular, have been found to be unmanageably complex, brittle, and unreliable.

The advent of end-to-end neural architectures suggested that the challenge of successful meshing
of all aspects of multimodal processing in dialogue could be overcome (see Vinyals and Le, 2015;
Serban et al., 2016; Li et al., 2017; Lowe et al., 2017; Wolf et al., 2019, a.o.). End-to-end dialogue
systems are trained directly on large amounts of conversational data, learning amapping from dialogue
history to a system response, either in a supervised or unsupervised fashion, without modularisation
of conversational knowledge. Such systems are robust and general with respect to the domains they
are designed to deal with. Nevertheless, it seems that progress has stagnated and that the provision
of even larger amounts of data will not improve the situation (see e.g. Lowe et al., 2017; Zadrozny,
2021), even when using large-scale, state of the art, Transformer-based models (Vaswani et al., 2017;
Devlin et al., 2019) pretrained on dialogue data (see e.g. Bao et al., 2020; Noble and Maraev, 2021;
Caldarini et al., 2022).

Recent large-scale end-to-end neural systems (e.g. Wolf et al., 2019), while displaying impres-
sive capacities with regard to producing fluent surface structures, do not adequately capture human
capacities in learning appropriately adaptive conversational behaviours. Often the responses of such
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systems are generic, uninformative, and neglectful of the overall coherence of a dialogue in that they
take into account only the immediately previous turn(s) thus lacking consistency with respect to the
longer history of the dialogue and its future prospects with respect to achieving some goal (see e.g.
Li et al., 2020; Vinyals and Le, 2015; Shang et al., 2015; Sordoni et al., 2015). As a result, they can
also be unreliable with respect to trustworthy responses because, as they predict single utterances at
a time, they ignore the purposeful nature of action in dialogue in the service of achievement of local
and global goals. On the whole, today’s conversational AI systems are static in that they are unable
to adjust to the dynamic environment of the dialogue history and evolving goals and do not come
equipped with strategic skills to enable them to negotiate the ambiguity, vagueness, and nuances of
human-to-human conversation, and thus adapt to new people, tasks, and situations.

We argue below that what is needed is a radical reconceptualisation of linguistic models away
from conceptions of NL as a shared code (Sec. 2). Instead, we suggest viewing NLs as sets of skills
for goal-driven (inter)action and coordination in order to exploit affordances in the socio-material
environment of an agent (Sec. 3). Efforts should thus focus on linguistically implemented feedback
mechanisms such as repair that allow interacting agents to coordinate their actions (Sec. 4). In terms
of models, neural or otherwise, such a move should enable designs that are able to actively adapt to
previously unseen situations. In terms of artificial agents, it should enable their using the immediate
local feedback from their environment including their interlocutor. Thus this approach goes well
towards the direction of freeing conversational interfaces from the shackles of the data on which they
were trained. Crucially, this move should involve dynamic, predictive models that are able to actively
engage with the world, observe the effects of what they do/say and not just in how the conversation
moves forward. In addition, they need to be checking the effects brought about in their multimodal,
physical situation of utterance. In the face of prediction error, model architectures would, on this
view, allow real-time, focused and local updates to their parameters. Doing this using just underlying
large-scale neural language models seems very promising but remains an open problem in terms of
the requisite neural architectures, attention mechanisms, training objectives as well as the nature of
the data. In Sec. 5, we present a low-level, dynamic model of NL interaction and coordination. The
model, DS-TTR, is a combination of Dynamic Syntax (Kempson et al., 2016, 2001) and Type Theory
with Records (Cooper, 2005; Cooper and Ginzburg, 2015), that we argue satisfies the desiderata listed
above. In Sec. 6 we present a couple of case studies showing how such a model can be implemented
and used in practice to bootstrap interaction.

2 The inadequacy of code models
On the one hand, what artificial conversational architectures show is that the complexity of NL

behaviour is underappreciated due to the apparent ease with which people handle their everyday inter-
actions. As a result, human communication is often modelled under the ‘code model’, namely, as one
agent coding and transmitting a message (the ‘sender’) with reception and decoding at another agent
(the ‘receiver’). This approach has failed spectacularly to account for the complexity and subtlety of
sense-making in human interaction (see, e.g., Fowler and Hodges, 2016). Models of communication
which assume idealised perfect speakers and listeners sharing mental representations of interpretations
of meaning – dating back to Shannon and Weaver (1949), but still underlying much research today,
can only ever be an abstraction, and one that we argue is detrimental to understanding successful
communication (see also Rączaszek-Leonardi et al., 2014).

On the other hand, the backlash against this simple-minded approach led to models of high mod-
ularity, domain specificity, and complexity. This was due to fact that it was deemed necessary to
enhance the code model with individualistic recursive reasoning about others’ mental states, as in
Gricean, Neo-Gricean, and Post-Gricean accounts of NL, and accompanying plan-based and belief
desires and intention (BDI) dialogue models (e.g. Grosz and Sidner, 1986; Matheson et al., 2000).
Recent responses to the ineffectiveness of end-to-end conversational AI include pleas to return to
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such highly complex intentionalist approaches (e.g. Kopp and Krämer, 2021). But these approaches
were in fact the reason of failure of rule-based/symbolic dialogue systems with explicit hand-crafted,
but in the end intractable, ‘mind-reading’ components (see e.g. Gregoromichelaki et al., 2011; Mirski
and Bickhard, 2021).

We believe that progress in dialogue modelling is impeded due to such standard assumptions that
still underlie much research in linguistics, cognitive science, and AI. These assumptions are shown
to be unsustainable, when we consider dialogue and interaction both for traditional rule-based ap-
proaches and modern neural architectures. Standard theories of communication rely on a separation
between speaker and hearer, with the speaker encoding and transmitting a message, and the hearer
decoding it. Even in intention-based accounts, speaker and hearer share the linguistic ‘code’ (the
language, some NL) and the only possibility for accommodating the function of errors is to char-
acterise them as “noise” to be eliminated. Successful communication is characterised as the hearer
correctly discovering the message which the speaker intended to convey, and this is assumed to be the
norm of what actually happens. This basic assumption underlies most psychological and pragmatic
theories of interaction including the Interactive Alignment Model (Pickering and Garrod, 2004, see
below), Gricean pragmatics (Grice, 1975) and Relevance Theory (Sperber and Wilson, 1995) which
assume an underlying literal meaning enhanced by context-specific pragmatic inferences to uncover
the speaker’s intention.

However, the actions of participants in dialogue form a system of coupled components (see, e.g.,
De Jaegher andDi Paolo, 2007) with the result that feedbackmechanisms, like constant error indication
and adjustment, are crucial for the stability, maintenance, and self-organisation of the system. Given
the moment-by-moment need for action coordination, participants do not need explicit representations
of others’ or their own mental states, as correctly assumed in deep learning models, and neither do
they need to converge on a shared ‘code’ or shared criteria of success. Instead, their conceptions
and contributions need to be complementary to sustain a social practice whose normative character is
defined externally to their own private or explicit rationalisations of their behaviour.

Rethinking our conception of successful communication away from shared codes or sufficiently
similar mental representations puts the flexibility and dynamism of NL at the heart of communica-
tion. As Healey et al. (2018a) state “[i]nstead of thinking of effective communication as formulating a
“perfect”message, it becomes about finding optimal ways to uncover and addressmisunderstandings”.
We go further and do not characterise these practices as uncovering ‘misunderstanding’ or ‘miscom-
munication’, terms suggesting that they are somehow in opposition to some common understanding
and common ground. Instead, we characterise successful coordination (rather than “communication”)
as the local, incremental resolution of inevitable perturbations in the self-organisation of a complex
dynamical system enabling people to contribute to larger social organisations that constitute their eco-
logical niche (‘form of life’). From a psychological perspective, the rapidity and highly incremental
nature of turn-taking exchanges in dialogue (Levinson and Torreira, 2015; Sacks et al., 1974) shows
that intractable exhaustive reasoning about some optimal local outcome is not what participants aim
for (cf. Frank and Goodman, 2012). Instead, practices of navigating through, and local adjustment to,
an incrementally evolving landscape of affordances provided by the ecological niche and participants’
own actions enable the forms of distributed cognition observed in dialogue (e.g. Dingemanse, 2020).
Transferring this insight to the domain of language technology, this assumption partially explains the
limited success of language models in mimicking many aspects of human performance. We attribute
the substantial current shortcomings of such models to the limited variety of data they are exposed to,
i.e., lack of multimodal data (see e.g. Hanjie et al., 2021; Hill et al., 2020,?; Ruis et al., 2020; Röder
et al., 2021; Lappin, 2021), lack of ability to actively interact with the data (cf. Li et al., 2017; Lewis
et al., 2017) so lack of feedback, and their lack of physical embodiment (see e.g. Pustejovsky and
Krishnaswamy, 2021). From this perspective, we suggest that progress in modelling human dialogue
and conversational AI requires a radical reconception of NLs as mechanisms for (inter)action.
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2.1 Human-human dialogue
The simplifications of characterising communication as attempts to adjust the replication of mental

states are shown to be inadequate when we consider dialogue as shown in example (1), taken from
the British National Corpus (BNC: Burnard, 2000). Units of meaning are co-created incrementally
(Kempson et al., 2016; Hough et al., 2015) by multiple interlocutors using incomplete utterances (e.g.
line 7 – Purver et al., 2011), with phenomena such as cross-person compound contributions (where
one person continues another’s utterance, as in lines 7 and 8 – Lerner, 1991; Howes, 2012), repairs
(e.g. the clarification requests in lines 4 and 6 – Sacks et al., 1974; Purver, 2004), and disfluencies (e.g.
the pause and restart in line 9 – Hough, 2015) – seen as ‘performance errors’ in traditional linguistics
– becoming crucial in the sense-making activities of the participants.

(1) a. J: Can you think of any catalysts?
b. A: Er is it potassium permanganate?
c. J: <unclear>
d. A:What
e. J: Pla <pause> a duck billed
f. A: Pardon?
g. J: A duck billed
h. A: Platypus.
i. J: And it’s not platypus it’s <pause> sounds like a type of pen.
j. A: Platinum.
k. J: Right, platinum. (BNC; file FMR 728-737)

This short extract in which a chemistry tutor (J) prompts a student (A) to answer the question posed
in line 1, neatly illustrates the characteristic divergence and convergence that is key to driving dialogue
forwards. From a standard individualistic perspective, one can characterise the exchange as indicating
that, from J’s perspective, A’s response in line 2 is not the expected answer – it is divergent with it. A
finally produces the expected answer (thus demonstrating convergence with J’s expectations) in line
10. This is a valid way of describing the process and it might be the way that a single participant might
rationalise or abstract the dialogue process into a narrative that they construct post hoc.

However, from a realistic modelling perspective, it neglects the fact that both participants operate
in a context (a ‘teaching context’) that imposes normative constraints in what their actions should be
aiming at as they perform the roles assigned to them by that sociocultural convention that constitutes
the practice they are enacting. There are no ‘teacher’ or ‘student’ roles outside this socially-afforded
context. The practice the participants engage in thus constitutes their (temporary) identities and action
possibilities afforded to them. So, both participants’ actions are now subsumed under the overall
normative perspective that their actions should be relevant to the elicitation of some particular answer
to a question posed by J, with both of them operating as a coherent system performing complementary
actions towards that goal and compensating for each other’s failings to contribute appropriately.

This normativity is imposed to the participants because there is a joint goal, not only between the
participants but including a goal-driven process of the societal ‘form of life’ in general pervading the
interaction. On the other hand, none of the two participants on their own has an overview of exactly
what this overall goal consists in and how it can be achieved even though they become aware of their
obligations and opportunities as they are enacting their roles. In effect, the cognition required for
achieving this goal is distributed (Hutchins, 1995) not only across the participants’ individual capac-
ities but, crucially, the sociocultural environment that provides the state space and the normativity,
correctness or incorrectness, of their joint action trajectory.

This distributed and systems perspective shows that the ecological sociocultural environment in
which the interaction takes place directs the participants’ unreflective but, nevertheless, fluent naviga-
tion towards the goal. The to and fro where A’s indications of how far they can reach with respect to
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contributing to the goal is explicitly conveyed not only by assertions but also by clarification requests
and completable utterances (Gregoromichelaki et al., 2020b), elsewhere characterised as “fragments”.
As is shown here, this is not a case of communication ‘breaking down’ but of opportunities to engage
in further enactment of exactly the ‘teaching’ practice they are engaged in. J compensates by revealing
affordances that might be obscured from A’s perception by making manifest more local, perhaps in
another context seemingly irrelevant, “incorrect”, affordances, which are functional in this particular
environment to allow both of them to reach a point of sufficient satisfaction of their mission: after
a cue in line 5 fails to elicit the required convergence, J exploits the predictability of the compound
noun phrase ‘duck-billed platypus’ to get A to produce the first syllables of the answer to the original
question. This is an illustration in miniature of the learning and developmental process that Gibson
(1966) calls the ‘education of attention’.

This management of the divergent and convergent contexts with respect to the normative impera-
tives of the sociocultural environment is incrementally and locally managed, with a hierarchy of joint
goals and subgoals emerging in an unplanned and opportunistic fashion as each participant makes
contributions that create opportunities for the other to make timely and appropriate responses and
compensatory moves when such goals seem to be threatened (Howes and Eshghi, 2021). Such uncer-
tainty with respect to what the activity exactly consists in, what concepts are relevant, how the practice
is going to develop, in general, what the affordances are, is built-in in our awareness and visible in
the talk’s surface: teacher and student can only have probabilistic expectations as to what they are
required to do moment-by-moment and this is the most effective strategy they should adopt given the
usual uncertainty of the environment (otherwise, their behavioural adjustments will be threatened by
“overfitting”). But they can trust the process unreflectively because they have available strategies,
built into NL practices, that will correct and adjust their performance based on the feedback received.

In this dialogue, there is an asymmetry between the speakers, as J, the tutor, is both the expert,
and more socially powerful than A, the student. But, in fact, this asymmetry is endemic, diagnostic of
not just all child/adult (Duveen and Psaltis, 2013; Kunert et al., 2011) or expert/non-expert exchanges
(such as tutoring dialogues or doctor/patient consultations, Lu et al., 2007; Pilnick and Dingwall,
2011), but all interactions. Differences in experiences, cultural background, individual physiology,
and social communities all contribute to differences in our NL use, meaning that we never share the
“same” language as anybody we nevertheless successfully interact with (Clark, 1998). This raises an
important practical question: How can we communicate successfully when individual differences in
language use are not the exception but the norm?

3 Language as action
We argue that the answer to this question relies on reconceptualising NL as a set of skills for

interaction (Kempson et al., 2016; Gregoromichelaki et al., 2019, 2020b). This recasts language use
in actionist terms, in parallel with recent actionist theories of perception (Nöe, 2004; Bickhard, 2009).
Actionism holds that perception is not a series of snapshots of scenes in the world leading to their
inferential manipulation as representations in the brain (Marr, 1982). Rather, perception is engagement
with the world – an embodied agent activity and achievement.

The motivation for this perspective starts with the assumption that, in order to survive, organisms
have to play an active part in controlling their environment and keeping it within desirable states
(thus embodying systemic principles like self-maintenance, self-organisation, autopoiesis, see, e.g.
Di Paolo, 2008; Di Paolo and De Jaegher, 2012). For an organism to exert such control, its adaptation
to its environment equips it with abilities to perceive predictable relationships between its actions and
ensuing perceptual stimulations (sensorimotor contingencies) since the purpose of perception/action
is to ensure agent effective adaptability.

Under this view, adaptive exploration and exploitation of environmental resources makes use
of the agent’s practical and embodied know-how of such sensorimotor contingencies, i.e., direct
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perception-action links (see, e.g, Buhrmann et al., 2013; Maye and Engel, 2011) rather than brain-
internal cognitive inferential or representational resources. Sensorimotor contingencies are lawful
regularities in the dynamic relation between the agent and the environment, the ecological niche, pat-
terns of dependence of changes in the sensory input as a function of an agent’s movements (Gibson,
2014). Consequently, the information agents perceive about entities and their potential for interaction
outcomes is expressed in terms of predictions and it is perspectival in the sense that it is agent-relative.
It is also mediated through the invocation of complex regular patterns, constraints (Barwise and Perry,
1983; Rączaszek-Leonardi and Scott Kelso, 2008), originating from social as well as natural learn-
ing experiences but not via internal skull-bound world models. Various such learned expectations
(hierarchically-organised sequences of predictions) based on memorised holistic patterns of experi-
ence (policies) are built up through reiterated interactions with the environment and are then deployed
in subsequent encounters (see also Bickhard, 2009). For human agents, in addition, learning to per-
ceive refers to what is offered through their direct time-extended interactions with the sociocultural
environment, which is a significant constitutive part of the human ecological niche. Therefore “per-
ception” of an entity will then be primarily constituted by the set of expectations it invokes concerning
the possible interactions enabled through it (its affordances), not some objective individuation or cat-
egorisation as a type of entity. Agents are not passive perceivers but act to realise the predictions
(anticipations) they expect to receive as feedback from the environment, thus predictions can also
serve as goals (see e.g. Gregoromichelaki et al., 2020c; Friston et al., 2012a). Such predictions can
be confirmed or disconfirmed through the feedback so that they are the basic source of learning This
view is intended to replace the static, internalist-inferential view of “perception” as the association of
stimuli with mental symbols stored and recovered as propositional knowledge.

Analogously, competence with NLs does not require an abstract representational level or language
of thought (Fodor, 1975), but can be viewed in terms of the linguistic and non-linguistic actions (utter-
ances and, e.g., gestures) that can be performed in particular situations. In any type of engagement with
others or the environment, an agent acts via NLmeans in order to perceive the predicted consequences
of their interactions, instead of constructing and refining representations of these interactions to serve
as guidance for its action. Such predictions are generated by means of the agent’s embodied sensori-
motor knowledge of the relevant sociocultural niche, i.e., by routinised anticipations (the ‘grammar’
in a Wittgensteinian sense, e.g., Forster, 2009), of how its various actions will change features of the
sociomaterial world. For individual agents, such predictions are shaped and constrained by what is li-
censed within the current sociomaterial context, i.e., within the normativity of the socially-distributed
nature of the grammar.

This means that no individual agent can be solipsistically aware of the significance of its own
action: by observing its consequences (feedback), the very act of speaking (or writing) in a particular
context reveals to participants (potentially abstractions over) the normatively constrained triggers of
actions for the words used as well as generating structured anticipations of further possible develop-
ments, the latter thereby becoming further affordances within that conversational exchange. Thus a
concrete action has both backward effects, in that it shapes the dialogue history under a particular
conceptualisation, and forward effects, i.e., it opens up new trajectories in the current landscape of
affordances. This is a more radical version of the empirically derived notion of the three-position “ar-
chitecture’’ of conversation in Conversational Analysis (CA) or the retroactive and proactive effects
of utterances (see e.g. Arundale, 2008, 2020). Since any action interpretation in dialogue has provi-
sional status, only a probabilistic distribution over effects is ever possible. Hence, so-called ‘repair’
processes (i.e. feedback) are not confined to the highly noticeable explicit attempts, like asking for
clarifications or correction, but it is a constant feature of interaction.

3.1 Exploiting probabilistic uncertainty in interactions
It is now becoming widely accepted that certainty either over interpretations or action outcomes

is neither a feasible goal nor a criterion of success for human interaction. Both uncertainty and the
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variety of multiple affordances in the human ecological niche introduce complexity due to the fact that
agents do not perceive only one affordance at a time. Agents always perceive a continuously restruc-
tured dynamic landscape of affordances that consists of various possibilities for action soliciting their
attention. Cisek & Kalaska (2010) propose that ‘affordance competition’ is resolved by humans and
animals through active moment-to-moment exploration of the field of available affordances without
realising an overall plan of action but by being drawn towards the most rewarding predicted outcomes.

Regarding the contribution of individual agents, the Skilled Intentionality Framework (Rietveld
et al., 2018) reconstructs Friston’s framework that is underpinned by the Free-energy Principle and
active inference (Friston, 2010, 2011; Mathys et al., 2011) in non-representational, ecological, and
action-oriented terms. Based on Bayesian statistics and machine learning approximate Bayesian in-
ference, the free-energy principle is a proposal for modelling living self-organising systems like hu-
mans and other animals. The framework built around this principle assumes that living organisms are
equipped with generative models generating top-down predictions about causes of received percep-
tual input from their environment. In order for such organisms to maintain themselves successfully in
their environment, they constantly seek to reduce the prediction error that ensues due to discrepancies
between their predicted sensory input and the actual (“bottom up”) input they receive from the en-
vironment. Long-term reduction of prediction error (‘minimisation of free energy’) can be achieved
by either changing the generative model (perceptual inference) or acting in the world to change the
sensory input received (active inference). In the domain of human cognition, Friston’s framework
has received entirely solipsistic interpretations conceiving of the generative model as inducing brain-
internal representations encoding information about an inaccessible external environment (Hohwy,
2013) in the same way that a neural network or distributional language model can be construed as a
system performing learning and inference in isolation of its environment and hence facing the ‘symbol
grounding problem’ (Harnad, 1990; Gao et al., 2018; Kottur et al., 2016).

However, a more plausible non-cognitivist interpretation is that an agent’s generative model re-
flects the attunement of the agent’s embodiment to its physical environment, for example, by estab-
lishing the regulation of its metabolic needs (‘homeostasis’). For a more complex social agent, the
generative model, in addition, incorporates embodied assumptions of normativity, i.e., the regular,
expected ways of acting in the practices the agent participates in (e.g. Kirchhoff and Froese, 2017;
Bruineberg et al., 2018a,b). From this perspective, rather than encoding information about an inacces-
sible environment, neural states contribute to the embodied capacities of changing the environment
through action. The goal of active inference is to steer an agent’s interactions with the ecological
niche in such a way that the agent’s actions harmonise with the affordances of the sociomaterial en-
vironment. Perceptual inference under this interpretation affects the agent’s internal (endogenous)
dynamics and can be conceptualised in terms of inducing patterns of action-readiness. Since, at any
moment, a whole landscape of affordances confronts complex agents, there needs to be a way for
the agent to select the relevant set of affordances that is predicted to yield the most rewarding out-
come. In the Ecological Psychology literature, such relevant affordances are termed ‘solicitations’
to distinguish them and emphasise the agent’s perspective and contribution to the determination of
affordances, which are environment-agent relations. The Skilled Intentionality Framework proposes
that the solicitation of multiple complex affordances towards humans can be modelled as triggering
states of ‘action readiness’ (Frijda et al., 2014) within individual organisms. These are affective states,
rather than the explicit formation of ‘goals’, ‘intentions’ and the like. Thus perceptual inference regu-
lates action readiness as the agent is motivated to act based on its disattunement with the environment
(its prediction error) which has an emotional effect on the agent’s awareness.

Perceiving (i.e. predicting) complex nested structures of potential affordances constitutes, in our
terms, conceptualisations of the situation as offered by the grammar and perceived by an agent at a
particular time. Developing competence with the grammar, in the sense of an agent being solicited
by appropriate action-inducing potential, requires training and developing skills. For human agents,
this is accomplished through participation in ‘practices’, i.e., coordinated patterns of behaviour of
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multiple individuals, within which NL interactivity is arguably the canonical case. Individuals or
groups of individuals can then respond selectively to relevant (sets of) affordances since they have
become attuned to the normativity of each particular situation. As a result, they act under the guidance
of resolving ‘affective tensions’, i.e., emotional responses like feelings of discontent or dissatisfaction,
rather than “rational” deliberations through propositional beliefs/intentions. Such feelings of tension
are aroused by the discrepancies (overwhelming prediction failure, i.e., prediction error) between a
concrete situation and the embodied skills of perceiving the norms of the situation type that the agent(s)
have acquired by training. Agents resolve such tensions by resorting to their expertise and acting
accordingly. Their familiarity with the interactive environment allows them to intervene and restore
perception of the expected affordances of the situation type.

4 Action coordination in dialogue
On the view proposed here, NL behaviours are understood as practices, with their normativity

underpinned by a set of conditional actions (the ‘grammar’) inducing ongoing emergent flows that
can be approximated in more individualistic, abstract, and detached terms as the often-studied notions
of context, content, intentions, speech acts and the like. On the present view, NLs, both in terms of
syntactic structure and conceptualisation potential, are first and foremost coordinative action-control
devices both with respect to the environment and other individuals; and a grammar formalism is duly
determined directly in terms of defining the normative constraints (i.e. setting out and traversing the
landscape of predicted affordances) that operate top-down to guide such action (see also Trafford,
2017; Zadrozny, 2020).

Affordances which, under our interpretation are publicly available resources, trigger motivations
for action within agents (solicitations, e.g. Dreyfus, 2013). However, affordances are not, as stan-
dard, simply properties of the environment. Instead they are relations between agent abilities and
what the current sociomaterial environment reliably makes available. This means that the shifting set
of affordances in dialogue concerns the collective potential of the interactants, rather than individual
perspectives whose meshing needs to be explicitly negotiated/represented. Interlocutors thus acquire
a joint perspective as long as they operate as a system with its own self-organisation underpinned by
prediction error minimisation (as modelled within the Free Energy Principle framework in its eco-
logical/enactive interpretation, e.g., Bruineberg et al., 2018a). So the local and shifting landscape of
affordances and the state and abilities of the agents involved determine at each moment a demarcated
‘field of affordances’, i.e. a subset of the landscape of affordances that are perceived as relevant by
the agents. This provides for a joint conceptualisation of the current action potential with minute
adjustments at each subsentential stage resulting in the appearance of planned rational action at the
macro-level and as strategically introduced repair of intention recognition failures as in (2) and (3).

(2) (a) A: so …umm this afternoon …
(b) B: let’s go watch a film
(c) A: yeah

(3) (a) A: I’m pretty sure that the
(b) B: programmed visits?
(c) A: programmed visits, yes, I think they’ll have been debt inspections. [BNC KS1 789-791]

However, the function of what have been characterised as overt repairs is not some extraordi-
nary feature of just some dialogue exchanges. The function and maintenance of a complex dynamic
system requires constant interaction with the environment and adjustment of the participants’ ac-
tion/perception by reducing their independent potential while non-summatively maximising their joint
capacities, otherwise it will just be the juxtaposition of two independent agents acting on their own.
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4.1 Repair
The function of feedback in a coupled system is a primary regulatory factor in subsuming the in-

dividual components under a system architecture. Independently, the components will have available
a multitude of degrees of freedom. In order to interact successfully and tractably, degrees of free-
dom need to be mutually constrained and this is achieved by the agents performing complementary
and compensatory actions in the service of joint action (De Jaegher and Di Paolo, 2007; Paolo et al.,
2018). So balancing and counterbalancing a complex but unified process can only be achieved by
continuous work that ensures the self-organisation of the system. Most research on dialogue consid-
ers repair – specifically clarification requests such as the “what?” and “pardon?” in (1) – to index
misunderstandings between individuals (mismatches between people’s takes on the dialogue). In our
view, however, repair as a separate category of constructions (Clark, 1996), turns out to be an artefact
of assuming that interlocutors aim for the establishment of shared common world “representations”,
with speech acts contributing propositional contents (Poesio and Rieser, 2010; Ginzburg, 2012) in
the service of reasoning and planning. These assumptions, which we argue are fallacious when in-
teraction is properly characterised as skilled action use, also underpin the currently popular Rational
Speech Acts model (RSA; Frank and Goodman, 2012; Goodman and Frank, 2016), which assumes
that speakers reason over others’ (presumed) intentions. A global RSA model does not seem to be
computationally tractable (e.g. Cohn-Gordon et al., 2018), while the general availability of local re-
pair mechanisms have been demonstrated to remove the need for such higher-order modelling in agent
simulations (Van Arkel et al., 2020). This is not to deny that people can reason over others beliefs, de-
sires and intentions (BDI). Rather, we claim that this is a higher-order skill not a necessary foundation
for successful interaction (Gregoromichelaki et al., 2011).

This stance also inverts the usual assumptions about backchannels, which are considered to be
“positive” feedback, signalling understanding (Fujimoto, 2007). On our view, a backchannel passes
up an opportunity for so-called “repair” (Schegloff, 1993) or, in our terms, transforms the field of
affordances in a monotonic manner. Such signals therefore acquire their myriad functions as a direct
consequence, depending on the action in progress when the backchannel is produced. For example,
if the speaker is telling a story, a backchannel may function as a continuer; if giving directions, it
may acknowledge identification of a landmark; and if offering an opinion, it may indicate agreement.
This position – supported by experimental evidence (Howes et al., 2012; Healey et al., 2018b; Mills,
2007; Mills and Healey, 2006) – means that rather than treating backchannels as multiply ambiguous,
and completely opposite to clarification requests, we can unify them as procedural mechanisms for
managing the types of transformations inducedmoment-by-moment in the field of affordances (Howes
and Eshghi, 2021).

We turn now to a formalism that, we argue, captures such a notion of repair as a natural conse-
quence of the incremental and domain-general architecture in terms of affordances that is assumed to
underlie NL grammar.

5 Dynamic Syntax and Type Theory with Records (DS-TTR)
Dynamic Syntax (DS; Cann et al., 2005; Kempson et al., 2001, 2016) is a constraint-based (or

model-theoretic, Pullum and Scholz, 2001) grammar architecture that models the dynamic, real-time,
incremental interpretation of word-sequences (comprehension) or linearisation of contents (produc-
tion) relative to a fine-grained concept of dialogue context (see Sec. 5.4 below). The DS syntactic
engine, including the lexicon, is underpinned by a specialised version of Propositional Dynamic Logic
(PDL), which is amultimodal logic able to express probabilistically licensed transition events (actions)
among the states of a dynamic system (Sato, 2011; see Fig. 1 where outgoing edges/actions from each
node form a learnable (Eshghi et al., 2013b) probability distribution conditioned on the current state
or DS tree). As a result, DS is articulated in terms of conditional and goal-driven actions whose ac-
complishment either gives rise to expectations of further actions, tests the environment for further
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contextual input, or leads to abandonment of the current strategy due to its being unviable in view of
more competitive alternatives (see Fig. 1). In current versions of DS, words, morphology, and syntax
are all modelled as affordances, i.e., indicators of opportunities for (inter-)action (Gregoromichelaki,
2018; Gregoromichelaki et al., 2019, 2020b,a). Both participants’ opportunities for action, as well
as their perspectives, are modelled in a unified model of the whole system, rather than assuming that
the grammar is an individualistic mechanism inside one person’s head. Participants’ interactions are
modelled as incrementally opening up a range of options so that selected alternatives can be pursued
either successfully or unsuccessfully: even though a processing path might look highly favoured ini-
tially, due to the changing conditions downstream, it might lead to an impasse so that processing is
aborted and backtracking to an earlier state is required (Sato, 2011).

T0

T1Intro (0.8)

T2

Pred

T3

Link-Adj (0.05)

T4*-Adj (0.15)

T5

john

abort

T6
john

“john”

T7
Thin

T8

Comp
T9

Pred

T10

Link-Adj

T11
Thin

T12

Comp

T13
likes

abort

abort

“likes”

Figure 1: DS-TTR parsing as a Directed Acyclic Graph (DAG): actions (edges) are probabilistic
transitions between partial trees (nodes).

Given these inherent properties, DS has lent itself particularly well to dialogue modelling and
analysis in the past decade or so (see Purver et al., 2006; Gargett et al., 2009; Gregoromichelaki et al.,
2011; Howes, 2012; Eshghi et al., 2015; Kempson et al., 2016; Howes and Eshghi, 2021, among
others). Dialogue is modelled as the incremental and interactive composition of action sequences
triggered by words either from oneself (in production) or an interloculor (in comprehension) in an
incrementally evolving context, enabling unitary explanations of ellipsis (Kempson et al., 2015), self-
repair (Hough and Purver, 2012), split utterances (Howes et al., 2011; Howes, 2012; Kempson et al.,
2016), clarification requests (Gargett et al., 2009; Eshghi et al., 2015) and other feedback (Howes and
Eshghi, 2021).

5.1 Type Theory with Records (TTR)
Recent efforts (e.g., Eshghi et al., 2012; Purver et al., 2011, 2010) have incorporated TTR (Cooper,

2012, 2005) and probabilistic versions of TTR (e.g., Hough, 2015; Hough and Purver, 2014b, 2017;
Hough et al., 2018) as the conceptualisation formalism assumed by DS. Here we assume a version
with types (‘concepts’) reinterpreted in DS dynamic terms as types of PDL actions (programs) (Gre-
goromichelaki et al., 2020b,a) – it is within this so-called DS-TTR fusion that we express our models
below.

TTR is an extension of standard type theory, and has been shown to be useful in contextual and
semantic modelling in dialogue (see e.g. Ginzburg, 2012; Fernández, 2006; Purver et al., 2010, among
many others), as well as the integration of perceptual and linguistic semantics (Larsson, 2015; Dobnik
et al., 2012; Yu et al., 2016). With its rich notions of underspecification and subtyping, TTR has proved
crucial for DS research in strongly incremental semantic specification (Purver et al., 2011; Hough,
2015), as well as specification of richer concepts of dialogue context (Purver et al., 2010; Hough,
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2015). Furthermore, Hough and Purver (2014a, 2017) use a probabilistic variant of TTR (Cooper et al.,
2015) in combination with DS to flesh out a model of probabilistic inference for incremental reference
processing and it has been shown, on this basis, how robotic design can benefit from modelling the
perception of affordances of objects in the environment (Hough et al., 2018, 2020). But DS-TTR is
in principle compatible with any version of probabilistic versions of TTR and other such frameworks
(e.g. Cooper et al., 2014)

5.1.1 TTR: a quick formal introduction
In TTR, conceptual structures are specified as record types, which are sequences of fields of the

form [ l : T ] containing a label l and a type T . Record types can be witnessed (i.e. having an instanti-
ation, hence ’true’) by records of that type, where a record is a sequence of label-value pairs [ l = v ].
We say that [ l = v ] is of type [ l : T ] just in case v is of type T .

R1 :

 l1 : T1

l2=a : T2

l3=p(l2) : T3

 R2 :
[

l1 : T1

l2 : T2′

]
R3 : []

Figure 2: Example TTR record types

Fields can be manifest, i.e. defined in terms of a singleton type e.g. [ l : Ta ] where Ta is the type
of which only a is a member; here, we write this as [ l=a : T ]. Fields can also be dependent on fields
preceding them (i.e. higher) in the record type (see Fig. 2).

The standard subtype relation ⊑ can be defined for record types: R1 ⊑ R2 if for all fields [ l : T2 ]
in R2, R1 contains [ l : T1 ] where T1 ⊑ T2. In Fig. 2, R1 ⊑ R2 if T2 ⊑ T2′ , and both R1 and R2 are
subtypes of R3. This subtyping relation allows semantic information to be incrementally specified,
i.e. record types can be indefinitely extended with more constraints: this inherent property has been
the central reason for turning towards TTR for a formalism in which unfolding conceptual structures
are represented in incremental parsing and generation.

Record Types as interaction potentials In this chapter, we follow Gregoromichelaki et al. (2020b),
and argue that under the actionist perspective on successful communication as coordinative action –
see earlier Sec. 3 – linguistically-relevant RTs should not be identified with Austinian propositions
(i.e., a situation being of a particular type), as in Cooper (2005); Cooper andGinzburg (2015) following
tradition in NL Semantics. Instead, with the aid of Dynamic Syntax, we propose their reformulation as
dynamically constructed ad hoc conceptualisations of situations inducing further actions (predictions)
capturing, and enabling, the formation of fields of affordances (see Sec. 6 for an operationalisation
of this idea). On this view, RTs are not taken to classify perceptual input or sensory information (cf.
Larsson, 2011; Dobnik et al., 2012; Yu et al., 2016), but instead trigger action policies inducing pre-
dictions for further interaction. What they classify are therefore (inter)action potentials, thus allowing
agents to predict and causally associate what they do or say with the outcomes that these actions are
likely to have in their environment, with this crucially including how an interlocutor may or may not
respond. As we will see below in Sec. 6, the DS-TTR hybrid also allows agents to use exploration
through trial-and-error to learn the probabilistic associations between what they say and what is likely
to happen afterwards (reinforcement learning), leading to particular action/word sequences becoming
routinised as ways of bringing about particular perlocutionary effects.

5.2 Parsing and generation of linguistic actions
In DS-TTR, parsing or generating a string of words or non-verbal tokens, induces some organisa-

tion of a state space of activity possibilities (a ‘field of affordances’) in combination with top-down
actions ensuing from preexisting skills and dispositions of the participants involved (the ‘grammar’)
(cf. Zadrozny, 2020). This either transforms the existing state space, adds new structures to it, or re-
moves existing paths through it. Locally, the immediate path trajectory moves through a tree-shaped
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state space with nodes as states traversed by means of constraints expressed by the modal opera-
tors (e.g. ⟨↓⟩, ⟨↑⟩, ⟨↑∗⟩ ) of a modal tree logic (the Logic of Finite Trees; LOFT: Blackburn and
Meyer-Viol, 1994) expressing topological relations among current or future anticipated nodes. The
tree-shaped organisation reflects the conceptualisation structure induced by the unfolding utterance
in terms of function-argument articulations. More globally, the state space is presented as a directed
acyclic graph (ICS-DAG, Interaction Control States DAG) that records possible paths of actions in
a landscape defined by what the grammar, acting as a controller of the normativity pertaining to lin-
guistic actions, allows as predictions of future interaction possibilities.

DS-TTR trees are always binary-branching when they have reached a stable organisation because
they underpin the dynamic and incremental computation implemented as a combination of functors
with their argument. However, as information becomes gradually available, intermediate stages will
involve ‘structural uncertainty’, where so-called ‘unfixed nodes’ will be constructed triggering pre-
dictions and search for their appropriate accommodation in the binary tree organisation. Tree nodes
thus correspond to terms in the lambda calculus and function application actions are conventionally
indicated with argument nodes appearing on the right and functor nodes to the left. Node states can
also host constraints on what input/output is predicted to occur indicated as labels. For example, an ar-
gument node might be one of the lowest types in the hierarchy of types (Ty(e)), standing for a generic
type of entity) and then its sister might be of type (Ty(e → t)) that receives that type as input and
returns a type t (Ty(t)) as output (the label component t should not be taken as indicating a truth-
evaluable proposition as in formal semantics frameworks since, for example, questions, imperatives,
non-finites etc. can all be characterised as Ty(t)). Functor-argument structures can be built recursively
on that basis (e.g. Ty(e → (e → t))). These type labels thus indicate what is possible for the node
type to be expanded into or act as constraints as to what further actions can be taken when the pointer
appears on such a node. For example, lexical entries are introduced with IF-THEN conditional ac-
tions that make reference to expectations regarding these type labels. So these types are indicators of
the structural function-argument organisation of the complex conceptual structure that is being built.
On the other hand, record types of Type Theory with Records (Fig. 4) expand such types to a more
fine-grained articulation of content and appear also on tree nodes. But, since such types can also be
defined as graph structures, we assume here that they can be introduced and built incrementally by
means of the PDL apparatus of DS, so that what appears on the node is an abbreviation of an embedded
subgraph of the higher level tree graph (see also Kempson et al., 2001, ch.9). Both trees and labels
can be partial in every respect, introduced initially by prediction, in the form of unsatisfied (indicated
with a ?) so-called requirements for any element defined within the formalism (e.g. ?Ty(e), is a re-
quirement for future development to Ty(e)). The satisfaction of predictions can only be launched by
proceeding from a specific point on the tree and this is indicated by a pointer, ♢, labelling the node
currently under development and relative to which any input/output can be defined. The potentially
variable position of the pointer relative to a local tree accounts for variable licensed word-order pos-
sibilities in each language. The purpose of the grammar is both to induce and satisfy these predictions
by licensing (consuming or producing) linguistic actions thus providing a normative perspective in
the parsing/generation process. Thus knowledge of the grammar is literally knowledge of “how to go
on” (Wittgenstein, 1953, para. 154) in an interaction. Since the possibilities that the grammar makes
available are probabilistically ranked, the notion of grammaticality is very local (i.e., non-sentential,
word-by-word transition probabilities) and gradient (see e.g. Lappin, 2021) and potentially defined
for any combination of lexical actions, with higher ‘surprisal’ values assigned to unusual, i.e., not yet
routinised, combinations (cf. Lau et al., 2017, 2020).

The dynamics of what constitutes ‘syntax’ in DS-TTR, is defined in terms of conditional pack-
ages of actions: procedural specifications for updates of the state space. Action sequences can be
retrievable as uninterruptable chunks (macros). So-called computational macros are invoked without
any linguistic input triggering their execution and only the pointer’s presence at a node satisfying the
conditional constraints included in the macro is necessary; and lexical macros are language-specific

12



5 DS-TTR

action policies corresponding to and triggered by specific lexical tokens. All action macros are pre-
sented in an IF…THEN…ELSE format and correspond to transition edges (formalised as action PDL
operators) along states of the tree or the ICS DAG (see e.g. Figs. 7 and 8). Formally, macros are com-
posed sequences of PDL atomic actions (formalised as (multi)modal operators) such as make, put and
go, which reflect state space updating operations. For example, make creates a new node, go moves
the pointer there, and put decorates the pointed node with a prediction regarding some node label.

Computational macros form a small, fixed set. Some enforce the overarching constraints im-
posed by the lambda calculus and the modal logic tree formalism (LOFT: Blackburn and Meyer-Viol,
1994): for example, Elimination, performs beta-reduction of a node’s daughters, and annotates the
mother node with the result, while Thinning removes satisfied requirements. Other computational
actions enable the fundamental predictivity and dynamics of DS-TTR, e.g. Completion, which moves
the pointer up and out of a sub-tree once all requirements therein are satisfied; and Anticipation which
moves the pointer from a mother node to a daughter node with any unfulfilled requirements thus ex-
pecting the resolution of a prediction in the immediate next step. While the former set of actions
are inferential, thus not adding any new information to the trees, the latter set introduce alternative
parse paths, thus capturing structural ambiguity: Completion for example, precludes any further de-
velopment of the current sub-tree because it moves the pointer up and out of it. The successful parse
or generation of a word w1 thus amounts to finding a sequence of computational actions (possibly
empty) leading to a tree that satisfies the preconditions of the lexical action for w1. The search process
through predicted future actions and the history of both taken and abandoned action possibilities is
recorded in the ICS DAG, with (partial) trees as nodes, and actions as edges.

Lexical actions are associated with word forms in a DS-TTR lexicon. Like computational actions,
these are state space updatemacros composed of sequences of atomic actions. Fig. 3 shows an example
for a proper noun, John. The action checks whether the pointed node (marked as ♢) has a prediction
(in DS-TTR terms, requirement) for the occurrence of type e; if so, it satisfies this prediction with
providing type e, introduces the conceptual potential associated with John (see section 5.1 for details)
and the bottom restriction ⟨↓⟩⊥ (meaning that the node cannot have any daughters). Otherwise (if
there is no prediction of ?Ty(e)), the action aborts, meaning that the word John cannot be parsed in
the context of the current tree.

Action

John

IF ?Ty(e)
THEN put(Ty(e))

put(
[

x= john : e
]
)

ELSE ABORT

Input tree Output tree

?Ty(t)

?Ty(e),
♢

?Ty(e→ t)

John−→ ?Ty(t)

Ty(e), ?Ty(e)[
x= john : e

]
, ♢

?Ty(e→ t)

Figure 3: Lexical action for the word ‘John’

Fig. 4 shows “John arrives”, parsed incrementally, starting with an empty tree, with only the root
node’s daughters predictively introduced without any lexical grounding, and ending with a complete
tree. The intermediate steps show the effects of Completion, which moves the pointer up and out
of a complete node, and of Anticipation, which moves the pointer down from the root to its functor
daughter.

The DS-TTR framework integrates various forms of uncertainty as an explanatory factor for
syntactic/semantic phenomena. As an illustration of syntactic uncertainty, we display in Fig 5 the
(condensed) steps involved in beginning the parsing of a standard long-distance dependency, Who
hugged Mary?. The basic idea implemented in the DS-TTR modelling of such dependencies is that
the sentence-initial phrase is introduced with recorded constrained uncertainty as to which role it will
eventually play downstream in the tree-construction process. While the process continues, the so-
called ‘unfixed node’ hosting the underderspecified wh-content (formalised as a metavariable in need
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?Ty(t)

?Ty(e),
♢

?Ty(e→ t)

“john” ?Ty(t)

Ty(e), ♢,[
x= john : e

] ?Ty(e→ t)

Completion ?Ty(t), ♢

Ty(e),[
x= john : e

] ?Ty(e→ t)

Anticipation ?Ty(t)

Ty(e),[
x= john : e

] ?Ty(e→ t), ♢

“arrives”; Completion; Elimination ♢,Ty(t),

 x= john : e
e=arrive : es

p=sub j(e,x) : t



Ty(e),[
x= john : e

] Ty(e→ t),
λr :
[

x : e
]
.[

e=arrive : es

p=sub j(e,r.x) : t

]
Figure 4: Incremental parsing in DS-TTR: “John arrives”
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T12
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Figure 5: Processing Who hugged

...Mary...unification macro...
−→

?Ty(t)

WH:e SPAS T : es ?Ty(es → t)

?Ty(e), ♢ Hug′(Mary′) :
?e→ (es → t)

Mary′ : e
Hug′ :

e→ (e→ (es → t))

UNIFY

...tree-completion macros...
−→

?QWH, Hug′(Mary′)(WH)(SPAS T )

spast Hug′(Mary′)(WH) : es → t

WH : e
Hug′(Mary′) :
e→ (es → t)

Mary′ : e
Hug′ :

e→ (e→ (es → t))

Figure 6: Structural uncertainty in DS-TTR: last steps of processingWho hugged Mary?
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of substitution) needs to be kept in memory awaiting its resolution. The resolution of the structural
uncertainty regarding the position of the unfixed node as subject will be provided in the next steps
(see Fig. 6 for one path in the DAG traversal) but the content resolution of the metavariable will
normally needs to be provided by the interlocutor. This structural and content uncertainty is an ex-
ample of how to resolve a number of other syntactic/semantic puzzles regarding the processing of
pronouns, anaphors, wh-elements, clitics, and various so-called “movement” operations1. Here the
task starts with a set of probabilistically-weighted predicted Interaction Control States (ICSs) repre-
sented in the ICS DAG. At this stage, which might be, let’s assume, the first utterance in a dialogue,
the DAG landscape displays all the potential opportunities for parsing or producing verbal actions,
prompting lexical actions as licensed by the grammar of English. These potential actions are assumed
to be “virtually present” for the participants even though they are not all eventually actualised.2 Either
participant might then take the initiative to begin the articulation of an utterance while the other is in
a state of preparedness checking whether the path pursued by the other interlocutor conforms to their
expectations or whether they need to take over and compensate for their lack of coordination (Eshghi
et al., 2015). Many alternative processing paths unfold at each step as affordances of the sociomate-
rial environment are taken up or are gradually abandoned (see also Sato, 2011; Eshghi et al., 2013b;
Hough, 2015).3

5.3 Conceptualisation as state transitions
The conceptual structure being built here is indefinitely extendible (see Cooper, 2012) and “non-
reconstructive” in the sense that it is not meant as a passive inner model of the world (see also Clark,
2017a,b) but as a means of interaction, that is contact, with the world via the predictions generated
regarding subsequent processing. Accordingly, the affordances that constitute the conceptual struc-
ture are viewed as relational (see also Chemero, 2009; Bruineberg et al., 2018a): a pairing of (aspects
of) the world with a (joint) perspective, namely, those affordances of the sociomaterial world that are
accessible relative to the agent(s)’ relevant sensorimotor skills shaped by prior experiences and the
ecological niche.4 Here we assume a perspectival construal of types as accessible affordances to an
agent or group of agents. Following standard assumptions in ecological psychology and phenomenol-
ogy, it is part of the force of an affordance that the perceiving/acting agent becomes aware that they
are manipulating the world from a particular point of view. This awareness is enabled as part of the
agent’s sensorimotor knowledge of regularities and lawful variations regarding the changes in the en-
vironment that are caused by the agent’s own actions as opposed to actions/events affecting the agent.
Whenmultiple agents are coupled as a temporarily assembled agentive system, but also in cases where
experts use tools or patients use prostheses, the collective perception/action possibilities that emerge
for the newly-formed systemic unit are not the result of simple summation of what is possible for the
individual components but a new perspective for each individual which incorporates their function as
a component of the overarching system (Di Paolo and De Jaegher (2012)). Thus the joint landscape

1The detailed justification of DS-TTR as a grammar formalism is given elsewhere (Kempson et al., 2001, 2011, 2016,
2017; Eshghi et al., 2011, a.o.).

2For relevant notions of “virtual presence”, see Noë (2012); DeLanda (2013)
3A more realistic graph would also include the possibilities of non-verbal actions, not only gestures, but also physical

voluntary actions like, for example, the physical response to a command or request. It is our claim that any “speech act”
can be performed non-verbally (see, e.g., Clark, 2012; Gregoromichelaki and Kempson, 2015 and (4)-(5)). Accordingly,
physical and grammatical NL actions readily compose with each other exactly because they performmeshing contributions
in human interaction (Gregoromichelaki, 2018):

(4) She played [playing tune on the piano] not [playing another tune on the piano]

(5) OK, let’s do it together. So we have [arm movement demonstration] and then we go [leg movement
demonstration]

4In this actionist and externalist perspective, we diverge from standard construals of TTR as in Ginzburg (2012),
Cooper, forthcoming.
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of affordances can be much more or much less affordances depending on “enabling” or “disabling”
couplings. In both cases, agents are able to perceive this new regime and generally capable to adjust
their contributions in complementary ways (Mills and Gregoromichelaki, 2010; Mills, 2014).

The relativisation of the structure of human conceptual types against practice-based abilities has
normative implications, in that the agent(s) might fail to achieve what is genuinely afforded to them by
the sociomaterial environment, or the agent(s) might fail to take up the multitude of affordances that
have been perceived as potential (“virtual”) paths of action. Moreover, given that they engage with
real properties of the sociomaterial context (see also Pickering and Garrod, 2021), the consequences
of misapplying their abilities will be detectable by the agents themselves as ‘error signals’ when their
predictions are falsified. Such failure is inevitable and constant and it is, in fact, the source that leads
to further finer-grain differentiations in the agents’ sociomaterial environment so that local adjustment
and long-term learning and adaptation are the outcomes (Bickhard (2009); cf. Friston (2010, 2011)).

Given this requisite dynamicity and world grounding, type (concept) labels, like Hug′ or Arrive′

here stand for abbreviations of triggers for complex sets of action potentials embedded under the DAG
ICS nodes as nested affordances. Such labels then constitute additional ICS choice points in the gen-
eration of further potential paths within the DAG. Given this view of concepts, what individuates each
such label is its distinguished provision of sets of available actions realisable in the next steps within
the field of affordances (the DAG). To take a “syntactic” type as an example, type t is differentiated
from type (es → t) in that the former (minimally) leads to the prediction of a left daughter of type es

and a right daughter of type (es → t) whereas the latter leads to the prediction of e and (e→ (es → t)).
This is what differentiates these types, not their distinct labels. Within the grammar, such types ei-
ther contribute tests in the conditional procedures that implement the operation of grammatical and
extra-linguistic actions or trigger searches for appropriate words, or expand the current structure and
annotations with the anticipation of further developments. But, even more pertinently here, such types
do not have any model-theoretic content beyond the transitions they allow or curtail in the traversal of
the states of the PDL model that underpins DS-TTR. Similarly, we take concept labels such as Hug′

or john′5 as triggering access to nested structures of potential actions regarding aspects of (mental or
physical) interaction with an event of hugging or interacting with John, some of which will be taken
up and others abandoned. As such, the types induced by the grammar (aka ‘concepts’) are mainly
constituted by subpersonal mechanisms, however, the results of their operation can be brought to con-
sciousness by processes of reification for purposes of, e.g., linguistic negotiation, explicit planning,
theory construction, or teaching.

The actionism foundation of DS-TTR suggests that the sensorimotor knowledge-as-action under-
pinning to cognition implicates conceptual understanding from the earliest stages of perceptual access
(unlike, e.g., existential phenomenology – Dreyfus, 2013 – and related views). However, conceptual
abilities do not, as in standard models, proceed via an intermediate cognitive stage before initiating
the control of action, for cognition is not seen as separate from the sensorimotor grounding of agent
performance. Under this view, concepts are not the rich internal representational structures of stan-
dard views – they are skills. For our purposes, we argue that in perceiving some entity and identifying
it as a dog, it is not a static retinal image that becomes associated with the application of the ‘Dog’
type. Instead, memorised patterns of current and past interactions are invoked to construct ad hoc a
pattern of predicted interactions that differentiates the particular entity in the current context through
its particular set of affordances as, e.g., a threat or a rewarding experience with incrementally ad-
justable behaviour of approach or avoidance (Gregoromichelaki et al., 2019; Bickhard and Richie,
1983). On this view, conceptual understanding cannot be taken as static pattern-matching but is, in-
stead, an achievement: it is time-extended, incremental, and based on trial-and-error rather than an
automatic mapping of experience to internal categories or propositional knowledge.

Moreover, due to their basis in action, concepts are necessarily always fragile and incomplete,
5For the view that such entity concepts are tracking abilities allowing the accumulation of knowledge about individuals,

see Millikan (2000).
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amenable to modification by prediction-error minimisation: in general, the specification of action
guidance must allow flexibility to fit different situations and changing conditions and, therefore, suc-
cessful situated action execution depends on leaving some degrees of freedom unbound (Suchman,
1987). This is notably echoed in NL phenomena like the so-called “polysemy” or “coercion” phe-
nomena where word meanings are notoriously shiftable even within a single context. It is also indi-
cated by the now established assumption of gradient grammaticality or well-formedness (e.g. Lappin,
2021). The latter, in our terms, is reduced to the effects of social normativity on complex, ad hoc con-
ceptualisation sense-making activities, as DS-TTR rejects the notion of a distinct level of syntactic
representations. Such phenomena clearly reflect the fact that NL use involves learning and adjust-
ment as an interactional system self-organises around the needs and goals of the interlocutors. As
Mills (2011, 2014) and Mills and Gregoromichelaki (2010) argue, interlocutors encountering a novel
situation, interactively and incrementally organise their joint and complementary predictions to estab-
lish via trial-and-error ad hoc routines for coordinating with each other. This is shown in experiments
(e.g. Healey andMills, 2006) where dyads of participants playing “the maze game”, gradually develop
group-specific procedural interdependence employing NL structures with highly ad hoc sequential-
position-dependent meanings.

Given affordance competition, agents select their next actions based on possibilities (probabilis-
tically) grounded on these types which function as ‘outcome indicators’ (Bickhard and Richie, 1983)
so that the predictions yielded by these types might be reinforced (verified) or abandoned (fail) in
the next steps. As long as they remain as live possibilities, the operations induced by the types will
keep triggering flows of predictions for further (mental or physical) action even if particular paths of
sequences of nested predictions are not taken up. Maintaining even abandoned options is required
for the explicit modelling of conversational phenomena like clarification, self/other-corrections (6),
etc. but also, quotation, code-switching, humorous effects and puns (Hough, 2015; Gregoromichelaki,
2018) (see, e.g., (7)).

(6) John went swimming with Mary, um. . . , or rather, surfing, yesterday.
[‘John went surfing with Mary yesterday’]

(7) The restaurant said it served meals any time so I ordered breakfast during the Renaissance.
[Stephen Wright joke]

5.4 Overt feedback as pruning of action sequences
However, these live but unactualised predictions, in the case of dialogue, reach the limits of their

(virtual) existence when it is no longer possible for either participant to backtrack successfully in order
to extend or “repair” ICS node elements due to the fact that the relevant paths have decayed in the
DAG history. Memory mechanisms are implicated in how far the currently active DAG records go.
This decay and elimination can also be facilitated and induced by the explicit verbal efforts (aka “overt
feedback”) on the part of the interlocutors, which can be seen as an efficiency strategy to intervene to
reduce DAG complexity and lessen the burden on memory requirements.

In DS-TTR, context, required for processing various forms of context-dependency – including
pronouns, VP-ellipsis, self-repair and short answers – is considered the global state space ICS DAG,
which encompasses the virtual field of affordances for the conversational participants (or a dynami-
cally developing ‘situation convention’, Bickhard (2009)). Edges here correspond to DS-TTR actions
– both computational and lexical macros – and nodes correspond to tree subspaces updated after the
application of each action (Sato, 2011; Eshghi et al., 2012; Kempson et al., 2015) – see Fig. 1. Here,
we take a coarser-grained view of the DAG with edges corresponding to words (sequences of compu-
tational actions followed by a single lexical action) rather than single actions, and dropping abandoned
parse paths (see Hough, 2015, for details) – Fig. 7 shows an example.

As Eshghi et al. (2015); Howes and Eshghi (2017, 2021) show, the processing and integration of
utterances that have been characterised as explicit feedback in dialogue can be captured using the ICS
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Utterance Context-final Semantics A’s Perspective After Utterance

A: The doctor
 r :

[
x : e
p=doctor(x) : t

]
x=ι(r.x,r) : e

 qA♢AB

S 0 S 1 S 2

The doctor

B: mhm
 r :

[
x : e
p=doctor(x) : t

]
x=ι(r.x,r) : e

 ♢ABqA
S 0 S 1 S 2

The doctor

A: he examined me



r :
[

x : e
p=doctor(x) : t

]
x=ι(r.x,r) : e
x1=spkr : e
ev=examine : es
p=sub j(ev,x) : t
p1=ob j(ev,x1) : t


♢AB qA

S 0 S 1 S 2 S 3 S 4 S 5

The doctor he examined me

Figure 7: Backchannels as movement of coordination pointers on Interaction Control States (ICS);
from A’s perspective.

DAG, enhanced with the perspectival conception of affordances we discussed earlier (Sec. 5.3), in this
case, implemented as two coordination pointers: the self-pointer, q; and the other-pointer, ♢. These
pointers indicate the points up to which the dialogue participants have each marked the material as
“grounded”, i.e., liable to decay from memory storage.

Any action causes ICS pointer movement, and, as we said earlier, any action possibility includes
the interlocutors’ own perspective of the effect on the ICS. Such perspectives, which are crucial for
demarcating self- and other-action may, as we will see below, provide divergent ICS trajectories for
each participant with convergence as a result of clarification interaction and repair processes more
generally. The self-pointer, qA, on participant A’s ICS view tracks the point to which A has given
evidence for reaching. The other-pointer, ♢AB , tracks where the other participant, B, has given evidence
for reaching. For example, an utterance produced by A will move A’s self-pointer to the rightmost
node of the ICS; on B’s ICS perspective, it is the other-pointer that moves to the same location. On this
model, the intersection of the path back to the ICS root from the self- and other-pointers is taken to be
grounded, with the effect that parse or production search within this grounded pathway is precluded,
thus removing the computational cost associated with finding alternative interpretation pathways, as
well as formally explaining how conversations move forward.

This model has been shown to account for backchannels (Howes and Eshghi, 2017, 2021), clar-
ificational exchanges and other corrections Eshghi et al. (2015). Clarification Requests (CR) cause
branching on the ICS, where the current path is abandoned and another branch constructed – a sub-
sequent response to the CR plus the acknowledgement of this response eventually realigns the two
coordination pointers, and the interlocutors’ individual ICS perspectives as a consequence.

Backchannels Fig. 7 is a step-by-step illustration of how the ICS with only A’s perspective develops
as the dialogue proceeds, and as B’s backchannel, ‘mhm’ is processed. After producing the first ut-
terance, A’s self-pointer, qA, is on s2, the right-most node of her ICS so far. B’s backchannel “passes
the opportunity to repair” (Schegloff, 1982), thus moving A’s other-pointer, ♢AB , to the same node
and so grounding “the doctor”. A’s subsequent continuation creates new edges, and moves her self-
pointer to the new right-most node. At this point, A’s new utterance needs further feedback from B
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to be grounded: divergence of pointer positions thus represents ‘forward momentum’ in conversation
(elsewhere called discursive potential; Ginzburg, 2012).

Overt repair Fig. 8 shows an example of a clarificational exchange, as in 8:

(8) (a) A: The doctor examined me…
(b) B: Chorlton?
(c) A: no, Fitzgerald

It shows the incremental updates arising in the clarifier’s perspective (B) in example (8), a case
of a non-local CR which requires backtracking.6 Initially, B successfully parses A’s utterance, thus
moving the other-pointer (♢BA) to the right-most node of his DAG. Not having secured a referent
for “the doctor” with enough certainty, he then aims to produce the CR, Chorlton?, which involves
backtracking to “the doctor” node in order to produce it. At this juncture A’s and B’s perspectives
have diverged: A’s self-pointer (qA) appears at the rightmost DAG edge, which B knows (hence ♢BA),
while B has not grounded that edge. B’s production of the CR causes A to have to parse it. This
serves to re-align pointer positions for A and B, the result of which is both of them focussing on “the
doctor”-subtree as the source of the misalignment.

A can now offer a confirmatory or a negative response to the CR. (c), in Figure 8 illustrates the
latter case, with the utterance of no reflecting the abandonment of the “Chorlton?” branch, rather
than the denial or rejection of a propositional content. This is followed by a correction of B’s CR, thus
forcingB’s other-pointer (♢BA) out of the “Chorlton?” branch, and inducing the construction of the new,
“Fitzgerald” branch. At this juncture, B’s self- (qB) and other-pointers (♢BA) are on different branches.
This can be taken as representing the requirement for further action to be taken in order to realign
pointer positions. Especially for B, whose pointer is now on an abandoned branch, this can constitute
an obligation to ground the new information provided by A’s repair Fitzgerald, thus accounting for the
forward momentum created by the negative response. B’s final backchannel, in 7(d), then serves to
realign his two pointers, signalling acceptance to A, who, having processed the backchannel moves her
other-pointer (♢AB) to the same node, s10, thus ending the clarification sequence with the achievement
of a realignment of A’s and B’s perspectives.

An alternative parsing path is illustrated in (e) of Figure 8. It represents the case where A, after
the clarification in 7(b), confirms that the doctor is in fact Chorlton. This simply involves, for B,
moving his other-pointer (♢BA) to the end of the “Chorlton?” branch, thus confirming the referent of
the doctor as Chorlton. This, unlike the negative response in 7(c) which necessitated rejecting already
established branches and pointer divergence, ends the clarification sequence.

Both alternatives end up with A’s and B’s perspectives aligned as the result of repair and backchan-
nelling and set for the continuation of the dialogue.

The account above puts structural, surface forms of context-dependency at the centre of the ex-
planation of participant coordination and feedback in dialogue: various forms of context-dependent
expression, from the weakest – backchannels, which have little or no semantic content, to the strongest
– utterance continuations, all serve to narrow down the otherwise mushrooming space of interpreta-
tion pathways. Their pervasiveness is therefore not coincidental, but strategic, and serves to make
dialogue computationally tractable.

This account gives formal rigour to the view expressed above under which language provides
a set of interactional mechanisms – such as ellipsis, repair and backchannels – for dealing with the
persistent potential for miscommunication (Healey et al., 2018b; Kempson et al., 2016).

6For space reasons we do not here include the clarification recipient’s (A) point of view.
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Utterance Context-final semantics B’s Perspective after utterance

(a) A: The doctor
examined me



r :
[

x : e
p=doctor(x) : t

]
x=ι(r.x,r) : e
x1=spkr : e
ev=examine : es
p=sub j(ev,x) : t
p1=ob j(ev,x1) : t


♢BAqB

S 0 S 1 S 2 S 3 S 4

The doctor examined me

(b) B: Chorlton?



r :

 x : e
p=doctor(x) : t
p1=Chorlton(x) : t


x=ι(r.x,r) : e
x1=spkr : e
ev=examine : es
p=sub j(ev,x) : t
p1=ob j(ev,x1) : t

 qB

♢BA
S 0 S 1 S 2 S 3 S 4

S 5 S 6 S 7

The doctor examined me

Chorlton?

examined me

(c) A: (no,)
Fitzgerald



r :

 x : e
p=doctor(x) : t
p1=Fitzgerald(x) : t


x=ι(r.x,r) : e
x1=spkr : e
ev=examine : es
p=sub j(ev,x) : t
p1=ob j(ev,x1) : t


qB

♢BA

S 0 S 1 S 2 S 3 S 4

S 5 S 6 S 7

S 8 S 9 S 10

The doctor examined me

Chorlton?

examined me
Fitzgerald

examined me

(d) B: uh-huh



r :

 x : e
p=doctor(x) : t
p1=Fitzgerald(x) : t


x=ι(r.x,r) : e
x1=spkr : e
ev=examine : es
p=sub j(ev,x) : t
p1=ob j(ev,x1) : t

 qB♢BA

S 0 S 1 S 2 S 3 S 4

S 5 S 6 S 7

S 8 S 9 S 10

The doctor examined me

Chorlton?

examined me
Fitzgerald

examined me

(e) A (accept):
yes/mhm



r :

 x : e
p=doctor(x) : t
p1=Chorlton(x) : t


x=ι(r.x,r) : e
x1=spkr : e
ev=examine : es
p=sub j(ev,x) : t
p1=ob j(ev,x1) : t

 qB♢BA

S 0 S 1 S 2 S 3 S 4

S 5 S 6 S 7

The doctor examined me

Chorlton?

examined me

Figure 8: Overt Repair as editing action sequences - from B’s perspective; turn (e) comes after (b)
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6 LEARNING THROUGH AFFORDANCE EXPLORATION

6 Learning through affordance exploration
We said earlier (Sec. 1) that one of the main problems with rule-based models of dialogue, and

NL in general, was that a rigid set of hand-crafted rules is applied to the processing and production
of behaviour in interactions with the users. As a result, such systems lack flexibility to adjust their
responses to various particular tasks by modifying their action policies under the receipt of feedback
by the user or the environment. This brittleness is due to the fact that domain-specific and separate
knowledge structures are assumed in their architectures lacking the ability to dynamically adapt to
open-domain tasks. Low-level, e.g. syntactic and semantic NLU and NLG components, cannot in-
teract and be influenced by the task at hand or the discourse context. Rigid categories of, e.g., intent
detection or slot-filling, along with separated modules of dialogue state tracking and policy learning
only allow for very task-specific behaviours, often erroneous when faced with ambiguity, noisy in-
put, and less frequent user needs. DS-TTR characteristically does not distinguish between different
modular capacities for embodied non-linguistic and linguistic action (Gregoromichelaki, 2013, 2018);
neither does it postulate separate knowledge bases for theoretically demarcated linguistic areas like
syntax, semantics, pragmatics (Gregoromichelaki et al., 2013). This is under the assumption that all
the phenomena identified as separate and indicative of autonomy in these domains have been shown to
be influenced by interactions across all presumed levels. It is shown that any update that is performed
to adjust processing in the current context might need to take into account all aspects of that context,
for example, even the notion of well-formedness has to be defined as context-sensitive and incremen-
tal (see e.g. (2)-(3) earlier). Therefore, given the uncertainty and rapid shifting of the sociomaterial
environment, for agent behaviours to be adaptable so that they can intervene and avail themselves of
opportunities, all such previously considered modularisations are cashed out uniformly in action terms
as affordances underpinned by adjustable sensorimotor knowledge on the part of individual agents.

On the other hand, data-driven, end-to-end dialogue systems based on deep learning methods
require large amounts of data and often fail to converge and generalise to best overall dialogue policies
online, offering generic, uninteresting responses instead. This can be due to learning only simple local
associations of input/output with lack of long-term goal-directed processing, ability to act jointly with
other agents, and the high-frequency of uninformative responses in the training data. What is not
usually implemented is the human tendency for forward-looking policies to exploit and explore the
environment, including the conversational environment, for affordances, opportunities for action to
receive rewards or avoid dangers. For this human characteristic to be implemented, agents have to
be modelled as ‘continual learners’ (Roller et al., 2020). Exploring via trial-and-error the shifting
landscape of affordances is crucial for the adaptability of agent systems (either sole embodied agents
or groups of agents, Adolph, 2020; Veissière et al., 2020). Human conceptualisations of situations at
hand, in the form of the solicitations perceived as states of action-readiness (see section 3.1 earlier),
depends on building skills that arise from the accumulation of multimodal experiences and acquiring
skill within practices (‘language games’) available in the particular ‘form of life’ inhabited by the
agent. Language use according to these assumptions is no different since its function is to guide the
perception and creation of such social conceptualisations via the establishment of grammar models,
i.e., in our view, sets of actions (macros) that have been proved rewarding in previous interactions.

It is for these reasons that words, morphology, and syntax are all modelled as affordances in DS-
TTR, i.e., indicators of opportunities for (inter)action and the source of normativity (notions of ‘cor-
rectness/incorrectness’ embodied in a grammar). As we saw earlier, such interactions incrementally
open up a range of options for the interlocutors so that selected alternatives can be pursued either suc-
cessfully or unsuccessfully: even though a processing path might look highly favoured initially, due
to the changing conditions downstream, it might lead to failure so that processing is aborted and back-
tracking to an earlier state is required. The potential for failure or success relative to goals imbues the
activities of the system, even though mainly subpersonal and perceived as affective states of ‘action
readiness’, with a notion of normativity arising from the routinisation of action sequences retrievable
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6 LEARNING THROUGH AFFORDANCE EXPLORATION

as chunks (macros). Such macros impose licensed expectations (predictions) that can in turn oper-
ate as triggers resulting in nested structures of affordances constraining potential interactions. This
normative field of nested anticipations of further interactions built on the basis of prior trial-and-error
efforts comes to constitute an instantiation of the grammar in particular concrete occasions. Such ad
hoc grammars are what prompts or constrains the actions of the individuals participating in a dialogue.
The grammar in this sense can be seen as an embodied generative model (e.g. Kirchhoff and Froese,
2017) allowing interlocutors to perform step-by-step a coordinated mapping from perceivable stimuli
(phonological strings) to conceptual and physical actions or vice-versa.

In the following sections, we will consider two case studies of how the above ideas can work in
practice. Firstly, we show howDS-TTR action policies can be learned through exploring environmen-
tal contingencies and acquiring skills in predicting suitable trajectories within the evolving landscape
of affordances via Reinforcement Learning methods. Reinforcement Learning mechanisms can be
subsumed under the more general framework of self-organisation via the Free Energy Principle and
active inference (see e.g. Friston et al., 2012b; Tschantz et al., 2020) which we take here in its enac-
tive interpretation as concerning states of action readiness. Secondly, we show how the ‘education of
attention’ assumption about learning how to perceive affordances (Gibson, 1966) can be cashed out
in DS-TTR terms. We focus on summarising the following areas of current research:

a. the so-called BABBLE method in Eshghi and Lemon (2014); Kalatzis et al. (2016); Eshghi
et al. (2017) for bootstrapping interaction. This work combines DS-TTR with Reinforcement
Learning, implementing and evaluating amethod that allows fully incremental dialogue systems
to be learned from small amounts of raw, unannotated dialogue data.

b. the work on grammar learning in Eshghi et al. (2013a,c) who present and evaluate a method
for learning an incremental DS-TTR grammars from data in which utterances are paired with
conceptualisation structures standing for the sense-making activities available to an agent.

6.1 Bootstrapping interaction: Learning how to do things with words
Eshghi and Lemon (2014), Kalatzis et al. (2016) and Eshghi et al. (2017) combine DS-TTR with

Reinforcement Learning, implementing and evaluating a method that allows fully incremental dia-
logue systems to be learned from small amounts of raw, unannotated dialogue data. This work shows
how a dialogue agent can learn to perform dialogue acts (or speech acts) together with their attendant,
interactional structures within a particular domain of language use (i.e. a language game) without any
of this being provided in advance in the form of supervision. The model relies on what the authors
call ‘babbling’: the dynamic and local trial-and-error generation and composition of action sequences
(macros) in a particular context, and in interaction with a simulated interlocutor, using a DS-TTR
grammar. This babbling mechanism amounts to what Gregoromichelaki et al. (2020b) call the ‘explo-
ration of the field of affordances’ in the agent’s environment which includes the interlocutor. This
leads to establishing conditional, probabilistic expectations about the outcomes of such low-level
action sequences, for example, a question answered, a request fulfilled, some information given, a
promise accepted etc. What is learned is thus probabilistic routines (macros) for producing desired
perlocutionary effects in the agent’s environment.

6.1.1 The BABBLE method
In this section we describe the BABBLE method for combining DS-TTR with Reinforcement

Learning for learning Dialogue Management (DM) and Natural Language Generation (NLG) poli-
cies for a particular dialogue domain, and where these two problems are treated as a joint deci-
sion/optimisation problem.

The BABBLE method starts with two resources: a) a DS-TTR parser DS TTR (either learned from
data, as in Eshghi et al., 2013a, or constructed by hand), for incremental language processing, but also,
more generally, for tracking the context of the dialogue using the DS TTR model of feedback (Eshghi
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et al., 2015; Howes and Eshghi, 2017, 2021); b) a set D of transcribed successful dialogues in the
target domain.

We perform the following steps overall to induce a fully incremental dialogue system from D:

a. Automatically induce the Markov Decision Process (MDP) state space, S , and the dialogue
goal, GD, from D;

b. Automatically define the state encoding function F : C → S ; where s ∈ S is a (binary) state vec-
tor, designed to extract from the current context of the dialogue, the semantic features observed
in the example dialogues D; and c ∈ C is a DS-TTR context, viz. a pair of TTR Record Types:
⟨cp, cg⟩, where cp is the content of the current, PENDING clause as it is being constructed, but
not necessarily fully grounded yet; and cg is the content already jointly built and GROUNDED
by the interlocutors (loosely following the DGB model of Ginzburg, 2012).

c. Define the MDP action set as the DS TTR lexicon L (i.e. actions are words);
d. Define the reward function R as reaching GD, while minimising dialogue length.

We then solve the generated MDP using Reinforcement Learning, with a standard Q-learning
method: train a policy π : S → L, where L is the DS TTR Lexicon, and S the state space induced using
F. The system is trained in interaction with a (semantic) simulated user, also automatically built from
the dialogue data and described in the next section.

Grounded Semantics Current Turn Semantics Dialogue so far



x2 : e
e2=like : es
x1=US R : e
p2=pres(e2) : t
p5=sub j(e2,x1) : t
p4=ob j(e2,x2) : t
p11=phone(x2) : t





x2 : e
e2=like : es
x1=US R : e
p2=pres(e2) : t
p5=sub j(e2,x1) : t
p4=ob j(e2,x2) : t
p11=phone(x2) : t
x3 : e
p10=by(x2,x3) : t
p9=brand(x3) : t
p10=question(x3) : t



SYS: What would you like?
USR: a phone
SYS: by which brand?

RT Feature:
[

x10 : e
p15=brand(x10) : t

][
e3=like : es
p2=pres(e3) : t

] x10 : e
x8 : e
p14=by(x8,x10) : t


 e3=like : es

x5=usr : e
p7=sub j(e3,x5) : t


 x8 : e

e3=like : es
p6=ob j(e3,x8) : t


F1 ↓ F2 ↓ F3 ↓ F4 ↓ F5 ↓

State:
⟨ Current Turn: 1, 1, 1, 1, 1, ⟩

Grounded: 0, 1, 0, 1, 1

Figure 9: Semantics to MDP state encoding with RT features

The state encoding function, F As shown in Fig. 9 the MDP state is a binary vector of size 2 × |Φ|,
i.e. twice the number of the RT features. The first half of the state vector contains the grounded
features (i.e. agreed by the participants) ϕi, while the second half contains the current semantics being
incrementally built in the current dialogue utterance. Formally:
s = ⟨F1(cp), . . . , Fm(cp), F1(cg), . . . , Fm(cg)⟩;
where Fi(c) = 1 if c ⊑ ϕi, and 0 otherwise. (Recall that ⊑ is the RT subtype relation).

6.1.2 Simulating the interlocutor
The user simulation is in charge of two key tasks during training: (1) generating user turns given

the domain-specific action triggers or contexts; and (2) word-by-word monitoring of the utterance
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so far generated by the system during exploration (i.e. babbling grammatical word sequences) by the
system. Both (1) and (2) use the full machinery of the DS TTR parser, as well the state encoding function
F, described above. They are thus performed based on the context of the dialogue so far, as generated
by DS TTR, the result of parsing or generation of word sequences (rather than, e.g. being based on string
or template matching).

The rules required for (1) and (2) are extracted automatically from the raw dialogue data, D, using
DS TTR and F. The dialogues in D are parsed and encoded using F incrementally. For (1), all the user
action triggers that trigger the user to generate a turn, si = F(c) – where c is a DS-TTR context –
immediately prior to any user turn is recorded, and mapped to what the user ends up saying in those
contexts - for more than one training dialogue there may be more than one candidate (in the same
context/state). The rules thus extracted will be of the form:
strig → {u1, . . . , un}, where ui are user turns.

Now note that the si’s prior to the user turns also immediately follow system turns. And thus to
perform (2), i.e. to monitor the system’s behaviour during training, we only need to check further that
the current state resulting from processing a word generated by the system, subsumes - is extendible
to - one of the si. We perform this through a simple bitmask operation (recall that the states are
binary). The simulation can thus semantically identify erroneous/out-of-domain actions (words) by
the system. It would then terminate the learning episode and penalise the system immediately, aiding
speed of training significantly.

6.1.3 Discussion

What is learned Using the method above, what is learned through RL exploration of lexical action
pathways – trial and error generation or ‘babbling’ – is a policy mapping Record Types of TTR (di-
alogue contexts) to individual lexical actions or words, thus incrementally specifying what the agent
should say/do in each of the contexts encountered enough times during training. Taken together with
the ICS DAG (see above, Sec. 5.4), these contexts thus encode potentials for interaction to achieve
some goal, that is, affordances in the agent’s immediate environment.

Generalisation/bias The method described above has enabled prototype incremental dialogue sys-
tems to be bootstrapped automatically from small amounts of raw, unannotated dialogue data. For
example, Eshghi et al. (2017) show that their resulting model can process 74% of the Facebook AI
bAbI dataset even when trained on only 0.13% of the data (only 5 dialogues); and that it can in addi-
tion process 65% of bAbI+, a corpus they created by systematically adding self-corrections, restarts
and hesitations to the bAbI dataset.

We argue that this generalisation capacity results from: (1) the predictive power of the underlying
Dynamic Syntax incremental processing engine which provides constraints on how lexical actions can
dynamically compose to form larger structures that simultaneously encode expectations about future
possibilities; and (2) the inference power inherent within the Type Theory with Records (TTR) con-
ceptualisation framework whose record types were used as action triggers. This allows equivalence
classes to be formed during learning over different interaction potentials whereby alternative action
pathways are captured as ‘synonymous’ viz. as having the same perlocutionary effect. This generali-
sation power thus results from the combined power the Dynamic Syntax syntactic engine on the one
hand, and the TTR inference engine on the other.

Multi-modality As noted, the DS-TTR framework has already been used to integrate perceptual and
linguistic semantics (see Yu et al. (2016); Hough et al. (2018, 2020)). Given the non-modularity as-
sumption underpinning DS-TTR, and its attendant continuity between linguistic and non-linguistic
actions (see above and Gregoromichelaki (2013, 2018)), it is only natural that learning through affor-
dance exploration, or the BABBLE method outlined above, should also extend seamlessly to cross-
modally grounded situations of utterance, or language games (e.g. manipulating objects together,
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cooking together, and the like). In what we presented above, the interactive exploration of dialogue
trajectories is used to learn the causal associations between what the agent might say, and how the
dialogue would continue (e.g. the interlocutor providing a specific piece of information). But this
discovered/learned perlocutionary effect need not be purely linguistic, but can equally be an effect
observed in the non-linguistic (e.g. visual), physical or simulated environment of the dialogue (e.g.
the interlocutor moving an object, going from one place to another or taking other actions in the world).

Future work will therefore explore integration of the BABBLE method with state of the art com-
puter vision models (e.g. LXMERT (Tan and Bansal, 2019), Resnet-based models, or scene graph
prediction models (Xu et al., 2017; Chen et al., 2019)), which can be used to infer high level repre-
sentations of the visual scene. These observations will then constitute the non-linguistic context of
the dialogue, and will form components of the reward function for RL. This in turn allows learning of
dialogue trajectories that lead to particular task outcomes in the visual environment of the agent.

6.2 Grammar induction
As a second case study of how affordance exploration underpins learning, we turn to work on

incremental grammar induction where essentially the same mechanism of trial-and-error composition
of macros is used to learn DS-TTR grammars from data in a weakly supervised setting.

Eshghi et al. (2013a) describe a method for inducing probabilistic DS-TTR lexicons from sen-
tences paired with DS-TTR trees (see below) representing the function-argument structure of concep-
tualisation potentials organising sense-making activities discriminated in a fine-grained manner with
assignments of typing information. Here we follow the general logic of the enactive version of the
Free Energy Principle and active inference in that we assume that perception (sense-making) consists
in predicting the sensory outcomes of agents’ own actions interacting with environmental affordances
and using prediction errors to either amend the predictions accordingly or take further action to im-
prove predictive accuracy. Eshghi et al. (2013b) then go on to extend this work to induce DS-TTR
lexicons (a set of word forms associated with action macros) from the CHILDES corpus (MacWhin-
ney, 2000). This work takes real child-directed utterances and pairs them with sense-making activity
indicators (conceptualisations) in the form of TTR Record Types (see above, but also Cooper, 2005;
Cooper and Ginzburg, 2015), thus providing weaker supervision. By assuming only the availability of
a small set of general action sequence composition operations, reflecting the properties of the lambda
calculus and the Logic of Finite Trees (LOFT, Blackburn and Meyer-Viol, 1994) that underpins DS-
TTR, they ensure that the lexical actions learnt include the grammatical constraints and corresponding
compositional structure of the language.

Their method exhibits incrementality in two senses: incremental learning, with the grammar being
extended and refined as each new data point becomes available; an ensuing inherently incremental,
probabilistic grammar for parsing and production, suitable for use in incremental dialogue systems
(Purver et al., 2011) and for modelling human-human dialogue.

6.2.1 Problem statement
Our induction procedure now assumes as input:

• a known set of DS TTR computational macros.
• a set of training examples of the form ⟨S i,RTi⟩, where S i = ⟨w1 . . .wn⟩ is an utterance in the
language and RTi – henceforth referred to as the target RT – is the record type representing a
situation conceptualisation, a set of available affordances, induced by S i.

The output is a grammar specifying the possible lexical macros for each word form in the corpus.
Given our data-driven approach, we take a probabilistic view: we take this grammar as associating
each word form w with a probability distribution θw over lexical actions. For use in parsing, this distri-
bution should specify the posterior probability p(a|w,T ) of using a particular action a to parse/generate
a word form w in the context of a particular partial tree T .
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6 LEARNING THROUGH AFFORDANCE EXPLORATION

6.2.2 Hypothesis construction by affordance exploration
The DS procedural framework is monotonic: actions can only extend the current (partial) tree

Tcur, deleting nothing except satisfied requirements. Thus, lexical actions can be hypothesised by in-
crementally exploring the space of all monotonic, well-formed extensions T of Tcur, whose maximal
conceptualisation affordances collected under R is a supertype of (extendible to / subsumes) the target
RT (i.e. RT ⊑ R). This gives a bounded space described by a DAG equivalent to that of section 5.4 -
see Fig. 1: nodes are trees; edges are possible tree-building actions; pathways start from Tcur and end
at any tree that can instantiate RT . Edges may be either known computational actions or new lexical
hypotheses. The space is further constrained by the properties of the lambda-calculus and the state
transitions imposed by the constraints expressed in the modal tree logic LoFT (not all possible trees
and extensions are well-formed).

General tree-building actions The lexical hypotheses comprising these DAG paths are divided into
two general classes: (1) tree-building hypotheses, which hypothesise appropriately typed daughters
to compose a given node; and (2) content hypotheses, which decorate leaf nodes with appropriate
supertypes of RT (non-leaf nodes then receive their content via beta-reduction/extension of daughters).

Tree-building actions can be divided into two general options: functional decomposition (corre-
sponding to the addition of daughter nodes with appropriate types and formulae which will form a
suitable mother node by beta-reduction); and type extension. We do not go into any details on the
latter here, but note that possible type extensions constitute their own search space modelled using
Record Type lattices (see Eshghi et al., 2013b; Hough and Purver, 2014a).

Figure 10 shows example tree-building action hypotheses which extend a mother node with a type
requirement to have two daughter nodes which would (once themselves developed) combine to satisfy
that requirement. On the left, a general rule in which a currently pointed node of some type X can be
hypothesised to be formed of types e and e → X (e.g. if X = e → t, the daughters will have types e
and e→ (e→ t)). This reflects only the fact that DS-TTR trees correspond to lambda calculus terms,
with e being a possible type. The other is more specific, suitable only for a type e node, allowing it to
be composed of nodes of type cn and cn→ e (where cn→ e turns out to be the type of determiners),
but again reflects only general semantic properties which would apply in any language.

?Ty(X), ♢

?Ty(e) ?Ty(e→ X)

IF ?Ty(X)
X , e

THEN make(⟨↓0⟩); go(⟨↓0⟩)
put(?Ty(e)); go(⟨↑⟩)
make(⟨↓1⟩); go(⟨↓1⟩)
put(?Ty(e→ X)); go(↑)

ELSE ABORT

?Ty(e), ♢

?Ty(cn) ?Ty(cn→ e)

IF ?Ty(e)
THEN make(⟨↓0⟩); go(⟨↓0⟩)

put(?Ty(cn)); go(⟨↑⟩)
make(⟨↓1⟩); go(⟨↓1⟩)
put(?Ty(cn→ e)); go(↑)

ELSE ABORT

Figure 10: Target-independent tree-building hypotheses

6.2.3 Hypothesis splitting
Hypothesis construction therefore produces, for each training sentence ⟨w1 . . .wn⟩, all possible

sequences of actions that lead from the axiom tree T0 to the target tree Tt (henceforth, the complete
sequences); where these sequences contain both lexical hypotheses and general computational macros.
To form discrete lexical entries, we must split each such sequence into n sub-sequences, ⟨cs1 . . . csn⟩,
with each candidate subsequence csi, corresponding to a word wi, by hypothesising a set of word
boundaries.

Eshghi et al. (2013a,b) go on to describe how this splitting process can work and lead to distinct
word hypotheses, wi, and how the probability distribution p(a|w,T ) can be estimated using an incre-
mental version of the Expectation Maximisation (or EM) algorithm.7

7We do not go into more detail here, but refer the interested reader to the original papers.
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6 LEARNING THROUGH AFFORDANCE EXPLORATION

6.2.4 Discussion
Using the method outlined above, Eshghi et al. (2013b) show how grammars (normative action

policies) can be learned from child-directed dialogue utterances annotated with conceptualisation po-
tential here assumed to be provided by the multimodal environment surrounding the learner. The
grammars learned are shown to have wide parsing coverage (92%), as well as good semantic accu-
racy (F-Score of 0.85).

The process described above of exploring the space of possible tree-building action sequences
that extend some tree to another tree whose maximal conceptualisation potential subsumes the target
set of affordances RT is essentially the same as the ‘babbling’, or affordance exploration mechanism
discussed above in Sec.6.1.1. While the mechanism is the same, there are at least two key differences
here:

(i) In the problem above, of bootstrapping interaction, actions corresponded to words, and the un-
derlying grammar was input to the learning. Here, action hypotheses are abstract: they merely
specify very general procedures for extending the tree, albeit constrained by the properties of the
lambda calculus and the modal tree logic, LoFT.

(ii) The trial-and-error generation or babbling mechanism of 6.1.1 was constrained by interaction
potentials, i.e. possible responses in specific cases from the interlocutor. Here, the search space
is constrained by RT , under current assumptions, the conceptualisation trajectories opened up by
reaching the goal: local action pathways that do not subsume further RT trajectories (i.e. are not
extendible to it: when RT @ R) are abandoned.

As we said earlier (section 5.3), we don’t take RTs as monolithic structures with symbols standing
for entities in the world. Instead, following the enactive logic of the Free Energy Principle and active
inference we construe such types in the same way as DS syntactic types, in the sense that they are
individuated by means of the actions that they make available. So, for example, a type like Dog′ ex-
pands into a set of sensorimotor contingencies (Nöe, 2004; Bickhard, 2009) arising from the agents’
experience with dogs. These are expressed as nested structures introduced with associated require-
ments as standard in DS-TTR and constitute anticipations of potential interactions with the individual
entity so characterised (Bickhard and Richie, 1983). In addition, as affordances, they also include
the perspectival effects of the agent’s action in proposing to conceptualise this entity by use of the
particular word form associated with the Dog′ type.

6.2.5 Limitations

Computational complexity As Eshghi et al. (2013b) themselves note, the overall time complexity of
the algorithm outlined above of hypothesising all action sequences that subsume the goal RT is expo-
nential in the number of fields in the goal RT . This is because the algorithm relies on the construction
of incremental conceptualisation pathways that explore all trajectories leading from the empty type,
Rϵ , to the goal RT ; thus traversing all the super-types of RT (all RS such that RT ⊑ RS ) in all possible
orders along the way. Since the number of super-types of RT is exponential in the number of fields in
RT , this algorithm has an exponential time complexity.

To evaluate their algorithm, Eshghi et al. (2013b) thus had to limit their training data to shorter
sentences which also had smaller conceptual structures, with fewer fields in the goal RT .

Curriculum Learning Nevertheless, it is not reasonable to assume that acquisition of grammars
in children starts from long, complex sentences or interactions with complex embedded structures.
Instead, children start learning words as part of short and simple dialogue exchanges, within simple
language games (e.g. getting something to eat, asking for an object, getting the other to attend to an
object, giving and taking, etc.), with the process of language acquisition often viewed as correlated
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7 CONCLUDING DISCUSSION

with the length of child-produced utterances (Ginzburg and Kolliakou, 2009; Brown, 1973). Over
time, they then use this knowledge in learning more complex syntactic and conceptual manipulations.

This curriculum learning strategy (Bengio et al., 2009) is compatible with the incremental hy-
pothesis construction algorithm above: while Eshghi et al. (2013b) learn from each training example
individually, starting from scratch each time, this does not have to be the case: action sequences
learned from shorter utterances and simpler conceptual structures can be reused later in the context of
more complex examples, thus exponentially reducing the search space and the complexity of learning
from these more complex examples.

Future work will therefore explore a curriculum learning strategy to overcome the computational
complexity of Eshghi et al.’s 2013b algorithm.

Learning from feedback In the formal and computational literature, the complexity of the grammar
induction problem has currently been only assessed on the basis of the assumption of an independent
syntactic and/or semantic structure that has to be learned on the basis of discovering rules and repre-
sentations (although cf. Steedman, 2002, for a view of grammar as affordances in the BDI tradition).
This formulation of the problem is ill-posed from the DS-TTR perspective, which seeks to formulate
a more holistic model of grammar that includes both the generator and parser, their interactions, as
well as the sociomaterial environment (see also Pickering and Garrod, 2021). This perspective allows
the DS-TTR system to invoke learning regimes that embed learning of verbal actions within domain-
general systems of action policy learning like RL. Here the assumption is that the added complexity of
dependencies between synergistically organised components will prove to be not a liability but an ad-
vantage: this is the intuition pursued in the development of end-to-end architectures and their current
successes as well as argued for in the psycholinguistic literature on language learning (e.g. Rączaszek-
Leonardi et al., 2013, 2018). Additionally, as Lappin (2021) also notes, general RL methods are now
being used by simulated agents to display generalising behaviours and one-shot learning of linguistic
actions integrated into policies that respond to multimodal signals (see e.g. Hill et al., 2021)

These insights open new avenues for how to improve current computational architectures and NL
theoretical frameworks by including features of human interactivity in the proposed models. It has
been a traditional assumption in formal linguistics that human language acquisition cannot involve
so-called “negative evidence”, i.e., explicit corrections are neither provided to the child learning the
language neither can they be processed as corrections given the child’s capacities. However, these
claims have been disputed and shown to be untenable. Saxton (1997); Saxton et al. (1998, 2005);
Chouinard and Clark (2003); Clark and Lappin (2011) among others argue that negative feedback in
the form of reformulations and corrections constitutes useful reliable input for inducing a grammar es-
pecially when the discourse context, i.e., the surrounding sociomaterial affordances, is simultaneously
taken into account, which is what the uniform non-modular formulation of a DS-TTR grammar is try-
ing to capture. Formal models of dialogue as well as grammar learning and induction methods now
advocate taking into account feedback from an interlocutor or teaching partner (see, e.g., Ginzburg,
2012; Angluin and Becerra-Bonache, 2017; Liu et al., 2018). In future work with simulated agents,
we plan to incorporate through further work with RL the impact of feedback, both corrective and
confirming, in the induction of a full DS-TTR grammar from the types of sparse data and one-shot
learning observable in human language acquisition.

7 Concluding discussion
In this chapter, we suggested that despite considerable recent advancements in deep learning meth-

ods for Natural Language Processing, progress in the area of dialogue modelling and Conversational
AI has plateaued. We argued that this is because of the very wide predominance of the code model of
communication under which agents are supposed to manipulate and transmit mental representations
via NL to then be recovered and duplicated in the mind of the interlocutor. This construal of commu-
nication leads to passive agents and models of agents that do not learn interactional feedback mecha-
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nisms, instead of fixed representations, with the result that they remain static during interaction or at
prediction time. We further argued that this view should be replaced by a strongly enactive perspective
on NLs, agent communication, and coordination in conversation. Research in robotics, psychology,
and neuroscience, but also machine learning, currently converge on the perspective that prediction
error minimisation is the mechanism under which agent performance is adjusted and developed dy-
namically to deal with the uncertainty and contingent nature of outcomes in everyday interactions
with the environment and other agents. This perspective presupposes that agents do not carry around
within their skulls explicit models of the world but, instead, they possess and gradually refine bodily
skills (which includes mental skills) for dealing with the constantly changing circumstances of the
surrounding sociomaterial environment. The affordances of the environment are revealed in real-time
to interacting agents based on constant ‘education of attention’ processes that, crucially for humans,
include NL-induced sociocultural conceptualisations of the material environment. This means that
artificial agents should primarily be provided with embodiment (even if in simulation forms) and
opportunities for interaction, along with learning and adjustment as is currently possible with deep
learning methods.

We presented two case studies using Dynamic Syntax and Type Theory with Records (DS-TTR),
an inherently action-based grammar formalism, showing how exploration of affordances and environ-
mental communication contingencies using the grammar as a generative model enabling prediction
induces learning. In one case, we showed how a dialogue agent can learn to perform dialogue acts (or
speech acts) together with their attendant interactional structures without any of this being provided in
advance in the form of supervision. What is learned in this case are conditional, probabilistic routines
for producing desired perlocutionary effects in the agent’s environment. In the second case study, we
saw how the same trial-and-error generation mechanism for affordance exploration enables DS-TTR
grammars to be learned from child-directed utterances.

Future DS-TTR work will explore lexical learning from live, multi-modal interaction whereby
lexical entries for simple, proto-grammars can be induced from real-time feedback.It will also integrate
the BABBLE framework with Deep Reinforcement Learning and state of the art computer vision
techniques in a visually grounded setup whereby a conversational agent can learn to interact with and
produce goal-directed effects in its physical (or simulated) environment.
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